Uniqueness of compact ancient solutions to the higher-dimensional Ricci flow

نویسندگان

چکیده

Abstract In dimensions n ≥ 4 {n\geq 4} , an ancient κ-solution is a nonflat, complete, solution of the Ricci flow that uniformly PIC and weakly PIC2; has bounded curvature; κ-noncollapsed. this paper, we study classification κ-solutions to n -dimensional on S {S^{n}} extending result in [S. Brendle, P. Daskalopoulos N. Sesum, Uniqueness compact solutions three-dimensional flow, Invent. Math. 226 2021, 2, 579–651] higher dimensions. We prove such either isometric family shrinking round spheres, or Type II constructed by Perelman.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ancient Solutions to Kähler-ricci Flow

In this paper, we prove that any non-flat ancient solution to KählerRicci flow with bounded nonnegative bisectional curvature has asymptotic volume ratio zero. We also classify all complete gradient shrinking solitons with nonnegative bisectional curvature. Both results generalize the corresponding earlier results of Perelman in [P1] and [P2]. The results then are applied to study the geometry ...

متن کامل

Uniqueness of Solutions of Ricci Flow on Complete Noncompact Manifolds

We prove the uniqueness of solutions of the Ricci flow on complete noncompact manifolds with bounded curvatures using the De Turck approach. As a consequence we obtain a correct proof of the existence of solution of the Ricci harmonic flow on complete noncompact manifolds with bounded curvatures. Recently there is a lot of study on the Ricci flow on manifolds by R. Hamilton [H1–6], S.Y. Hsu [Hs...

متن کامل

Strong Uniqueness of the Ricci Flow

In this paper, we derive some local a priori estimates for Ricci flow. This gives rise to some strong uniqueness theorems. As a corollary, let g(t) be a smooth complete solution to the Ricci flow on R, with the canonical Euclidean metric E as initial data, then g(t) is trivial, i.e. g(t) ≡ E.

متن کامل

Generalized Ricci Flow I: Higher Derivatives Estimates for Compact Manifolds

In this paper, we consider a generalized Ricci flow and establish the higher derivatives estimates for compact manifolds. As an application, we prove the compactness theorem for this generalized Ricci flow.

متن کامل

Uniqueness of Ricci Flow Solution on Non-compact Manifolds and Integral Scalar Curvature Bound

of the Dissertation Uniqueness of Ricci Flow Solution on Non-compact Manifolds and Integral Scalar Curvature Bound

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Crelle's Journal

سال: 2022

ISSN: ['1435-5345', '0075-4102']

DOI: https://doi.org/10.1515/crelle-2022-0075